Calculations for Compressed Spring Washers (Reference)

1 Load and Stress Calculations of Wave Washer

Fig. 1 Wave Washer

P: Load (N)
S: Stress ($\mathrm{N} / \mathrm{mm}^{2}$)
D: Diameter of outer periphery (mm)
d: Diameter of inner periphery (mm)
D_{m} : Average diameter (mm) $[=(\mathrm{D}+\mathrm{d}) / 2]$
b : Rim width (mm)[=(D - d)/2]
t : Plate thickness (mm)
N : Wave number
δ : Amount of deflection (mm)
E : Longitudinal elastic modulus ($\mathrm{N} / \mathrm{mm}^{2}$) (Table 1)
π : Circumference ratio

Reference for design

To change the load by a large amount

To change the load by a small amount

Please adjust the plate thickness and wave number. The load is proportional to the cube when adjusting the plate thickness, and to the fourth power when adjusting the wave number. (However, as the number of waves increases, it becomes easier to settle, so please consider the basic three waves.)
Adjust the diameters of inner and outer peripheries (rim width). The load is proportional to the rim width.

Notes

There are differences between the calculated and measured values for the formula of deflection and load. Substitution of conditions such as diameters of outer and inner peripheries gives a first-order equation of deflection and load which is plotted as a straight line. However, the actual load curve will not be a simple straight line but a curve.

2 Load and Stress Calculations of Curved Washer

Fig. 1 Curved Washer

Load

$P=\frac{4 K_{1} E t^{3} \delta}{D^{2}}$
P: Load (N)
S: Stress ($\mathrm{N} / \mathrm{mm}^{2}$)
D: Diameter of outer periphery (mm)
d: Diameter of inner periphery (mm)
t : Plate thickness (mm)
δ : Amount of deflection (mm)
E : Longitudinal elastic modulus ($\mathrm{N} / \mathrm{mm}^{2}$) (Table 1)
K_{1} : Load correction coefficient [=1-d/D] (Table 2)

Table 1 Longitudinal elastic modulus of main materials (E)	
Material	Longitudinal elastic modulus ($\left.\mathrm{N} / \mathrm{mm}^{2}\right)$
Carbon spring steel	206000
Stainless steel for spring	181000

3 Load and Stress Calculations of Dish Spring
(Reference data: JIS B 2706)

Fig. 3 Dish Spring

The coefficients used for calculation are as follows:

$$
a=\frac{D}{d}
$$

$$
\begin{aligned}
& \mathrm{C}_{1}=\frac{1}{\pi} \cdot \frac{\left(\frac{a-1}{a}\right)^{2}}{\frac{a+1}{a-1}-\frac{2}{\ln \alpha}} \\
& \mathrm{C}_{2}=\frac{1}{\pi} \cdot \frac{6}{\ln a} \cdot\left(\frac{a-1}{\ln a}-1\right) \\
& \mathrm{C}_{3}=\frac{3}{\pi} \cdot \frac{a-1}{\ln a}
\end{aligned}
$$

D: Diameter of outer periphery (mm)
d : Diameter of inner periphery (mm)
t : Plate thickness (mm)
H_{o} : Free height (mm)
h_{0} : Total amount of deflection ($\mathrm{H}_{0}-\mathrm{t}$) (mm)
E : Longitudinal elastic modulus ($\mathrm{N} / \mathrm{mm}^{2}$) (Table 1)
v : Poisson's ratio of material (0.3)
P: Load (N)
δ : Amount of deflection (mm)
k : Load rate (N / mm)
R: Chamfer radius of corner (mm) σ I: Stress on position I ($\mathrm{N} / \mathrm{mm}^{2}$)
OII: Stress on position II ($\mathrm{N} / \mathrm{mm}^{2}$)
σ III: Stress on position III ($\mathrm{N} / \mathrm{mm}^{2}$)
$\sigma \mathrm{IV}$: Stress on position IV ($\mathrm{N} / \mathrm{mm}^{2}$)

Including the correction item $\left(\frac{D-d}{(D-d)-3 R}\right)$ that allows for round chamfering of the corner presents the load P by the following formula:

$$
P=\frac{D-d}{(D-d)-3 R} \cdot \frac{4 E}{1-v^{2}} \cdot \frac{t^{3}}{C_{1} D^{2}} \cdot \delta \cdot\left[\left(\frac{h_{0}}{t}-\frac{\delta}{t}\right) \cdot\left(\frac{h_{0}}{t}-\frac{\delta}{2 t}\right)+1\right]
$$

The stresses on the positions I, II, III and IV can be calculated according to the formulas given below. A positive value indicates tensile stress while a negative value indicates compression stress.

$$
\begin{aligned}
& \sigma_{\mathrm{I}}=\frac{4 \mathrm{E}}{1-v^{2}} \cdot \frac{\mathrm{t}}{\mathrm{C}_{1} \mathrm{D}^{2}} \cdot \delta \cdot\left[-\mathrm{C}_{2} \cdot\left(\frac{\mathrm{~h}_{0}}{\mathrm{t}}-\frac{\delta}{2 \mathrm{t}}\right)-\mathrm{C}_{3}\right] \\
& \sigma_{\text {II }}=\frac{4 \mathrm{E}}{1-v^{2}} \cdot \frac{\mathrm{t}}{\mathrm{C}_{1} \mathrm{D}^{2}} \cdot \delta \cdot\left[-\mathrm{C}_{2} \cdot\left(\frac{\mathrm{~h}_{0}}{\mathrm{t}}-\frac{\delta}{2 \mathrm{t}}\right)-\mathrm{C}_{3}\right] \\
& \sigma_{\text {II }}=\frac{4 \mathrm{E}}{1-v^{2}} \cdot \frac{\mathrm{t}}{a \mathrm{C}_{1} \mathrm{D}^{2}} \cdot \delta \cdot\left[\left(2 \mathrm{C}_{3}-\mathrm{C}_{2}\right) \cdot\left(\frac{\mathrm{h}_{0}}{\mathrm{t}}-\frac{\delta}{2 \mathrm{t}}\right)+\mathrm{C}_{3}\right] \\
& \sigma_{\text {IV }}=\frac{4 \mathrm{E}}{1-v^{2}} \cdot \frac{\mathrm{t}}{a \mathrm{C}_{1} \mathrm{D}^{2}} \cdot \delta \cdot\left[\left(2 \mathrm{C}_{3}-\mathrm{C}_{2}\right) \cdot\left(\frac{\mathrm{h}_{0}}{\mathrm{t}}-\frac{\delta}{2 \mathrm{t}}\right)-\mathrm{C}_{3}\right]
\end{aligned}
$$

The load rate of the spring is non-linear and can be calculated according to the following equation.

$$
k=\frac{d P}{d \delta}=\frac{D-d}{(D-d)-3 R} \cdot \frac{4 E}{1-v^{2}} \cdot \frac{t^{3}}{C_{1} D^{2}} \cdot\left[\left(\frac{h_{0}}{t}\right)^{2}-3 \frac{h_{0}}{t} \cdot \frac{\delta}{t}+\frac{3}{2}\left(\frac{\delta}{t}\right)^{2}+1\right]
$$

